Heegner points, p-adic L-functions, and the Cerednik-Drinfeld uniformization
نویسندگان
چکیده
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 1 Quaternion algebras, upper half planes, and trees . . . . . . . . . . . . . . . . . . . . . . . . . 456 2 The p-adic L-function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464 3 Generalities on Mumford curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471 4 Shimura curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473 5 Heegner points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 6 Computing the p-adic Abel-Jacobi map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484 7 Proof of the main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
منابع مشابه
Stark-Heegner points over real quadratic fields
Motivated by the conjectures of “Mazur-Tate-Teitelbaum type” formulated in [BD1] and by the main result of [BD3], we describe a conjectural construction of a global point PK ∈ E(K), where E is a (modular) elliptic curve over Q of prime conductor p, and K is a real quadratic field satisfying suitable conditions. The point PK is constructed by applying the Tate p-adic uniformization of E to an ex...
متن کاملHeegner Point Computations Via Numerical p-Adic Integration
Building on ideas of Pollack and Stevens, we present an efficient algorithm for integrating rigid analytic functions against measures obtained from automorphic forms on definite quaternion algebras. We then apply these methods, in conjunction with the Jacquet-Langlands correspondence and the Cerednik-Drinfeld theorem, to the computation of p-adic periods and Heegner points on elliptic curves de...
متن کاملAutomorphisms and Reduction of Heegner Points on Shimura Curves at Cerednik-drinfeld Primes
Let X be a Shimura curve of genus at least 2. Exploiting Čerednik-Drinfeld’s description of the special fiber of X and the specialization of its Heegner points, we show that, under certain technical conditions, the group of automorphisms of X corresponds to its group of Atkin-Lehner involutions.
متن کاملThe p-adic upper half plane
The p-adic upper half plane X is a rigid analytic variety over a p-adic field K, on which the group GL2(K) acts, that Mumford introduced (as a formal scheme) as part of his efforts to generalize Tate’s p-adic uniformization of elliptic curves to curves of higher genus. The Cp–valued points of X are just P(Cp)−P(K), with GL2(K) acting by linear fractional transformations. Mumford showed that the...
متن کاملPeriods and points attached to quadratic algebras
Φ : H/Γ0(N) −→ E(C), (0–1) where H is the Poincaré upper half-plane and Γ0(N) is Hecke’s congruence group of level N . Fix a quadratic field K; when it is imaginary, the theory of complex multiplication combined with (0–1) yields the construction of a remarkable collection of points on E defined over certain ring class fields of K. These are the Heegner points recalled in Section 1 whose study ...
متن کامل